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Abstract 

Software Defect Prediction(SDP) has been a popular topic in both the 
Software engineering (SE) and Machine Learning (ML) domain because of 
its significant contribution toward reducing the cost and time of projects. 
Researchers have published many individual studies for various ML 
methods for SDP over the past few years. In addition, several survey 
articles have systematically reviewed the literature too. The last review 
article on applications of machine learning in defect prediction is for 2014. 
Also, there has been some review articles for unsupervised methods and 
cross-project challenge in SDP in recent years. However, a review article 
that covers the most recent studies from 2014 to 2019, along with the 
identification of the current trends and issues, is needed. In this study, we 
reviewed 23 articles in the domain of SDP to investigate the use of different 
ML models, defect data features, and performance evaluation in SDP 
papers. Additionally, the latest trends in SDP are introduced, and detailed 
information on what has been done so far to address these challenges is 
provided. 

 

1  Introduction  

Software defect prediction is one of the most critical steps in software development life -
cycle. It is super-useful for software practitioners to be aware of potential defects in their 
software program. Locating potential defects in software projects can help to decide on 
designating more resources for testing and developing problematic projects or components. 
Software quality assurance experts would focus more on parts of programs with higher 
likelihoods of being defect-pone. The term "Software defect" is defined as a difference 
between what is expected and what is happening after production. This variance can be 
happened due to an internal or external problem. A software defect is usually introduced to 
software because of a human error, which causes the program to perform unexpectedly. 
Different factors can affect how much a software program is prone to defects. Program 
complexity, size, structure, and design of different components, classes, or objects can affect 
the chance of software to have defects. The relation of different classes, objects, or 
components should be considered when predicting the chance of software to be defect -prone. 
There have been different machine learning methods trying to come up with accurate 
solutions for defect prediction. The mentioned metrics can be obtained from the source code 
of software programs and then be used to create a machine learning model to predict the rate 
of defects for new programs. 

In this research, we have a review on articles published from 2015 or later. We considered 23 
articles from the last recent years. We categorized them based on the machine learning 
techniques they used, feature metrics, database, performance evaluation metrics and the 
contribution in the literature. What makes this study different from the previous ones is that 
we have identified recent trends and challenges in defect prediction domain and individually 
studied what is done to deal with them and what the probable solutions are.  



2  Related work  

In 2011, Catal et al. [50] had a systematic review on machine learning in defect prediction. 
They reviewed 90 articles based on their contents and categorized them. In 2015 Malhotra et 
al. [2] had a comprehensive review on using machine learning approaches for fault 
prediction in software. Their group reviewed 64 primary papers from 1991 to 2014 and 
organized different machine learning techniques with respect to their model, metric, 
performance and database. Similar studies have been done in this area of research. For 
example, Li et al. [3] had a review only on unsupervised techniques used in defect 
prediction. 

 

3  Methodology  

In this section we briefly explain the approach that has been taken in order to perform this 
literature survey project. To reach our study goals, we followed the Systematic Literature 
Review (SLR) guideline suggested by Hall et al. [32]. this procedure consists of several 
steps such as identification of the research questions, strategic article search, article 
selections and so on. Figure 1 is a schematic diagram of the steps taken to conduct this 
research. 

Figure 1: Methodology 

 

3 .1  Resea rch  q ues t io ns  

Based on previous literature reviews on similar subjects and by having a quick review of 
some articles we have carefully defined 5 study questions that help us achieve our goal 
which is to summarize, analyze and evaluate studies regarding their machine learning 
techniques, metrics, feature selection approach, and performance evaluation. Research 
questions are tabulated in table 1. 

Table 1. Research questions 

Research Question  Motivation 

RQ1. What modeling techniques are used? 
To identify the common techniques that are being used for 

fault prediction. 

RQ2. What dataset is used? To find appropriate datasets for software fault prediction. 

RQ3. Which software metrics are commonly used for To find out the metric that works well for fault prediction. 



defect prediction? 

RQ4. What is the feature extraction technique? Identify which features perform the best. 

RQ5. Which performance evaluation criteria are used? 
Investigate the performance of the ML technique in prediction 
software defects. 

 

3 .2  Sea rch  s t ra teg y  

After identifying our research goal and questions, we defined some subtopic of SFP like 

cross-project defect prediction (CPDP), within project defect prediction (WPDP) and 

classification techniques to mention but a few. We then searched for the related studies in the 

most famous software engineering journals. In the table 2, the distribution of papers among 

journals and conferences is presented. One of the priorities in the selection of papers is the 

impact factor of its' journal or conference. All of the studies in our review are selected from 

renowned software engineering or machine learning journals and conferences. The majority 

of studies (More than 60 percent) are selected from the top three software engineering 

journals and conferences. The following electronic databases were used for finding the 

primary studies: 

 IEEE Xplore 

 ScienceDirect 

 Research gate 

 Wiley Online Library 

 SpringerLink 

 

Table 2. Search Strategy 

Journal or Conference Abbreviation Studies 

International Conference on Software Engineering ICSE 
[4],[5],[10], 

[21],[37] 

IEEE Transactions on Software Engineering TSE 

[1],[2],[6], 

[7],[15],[18], 

[28],[32], 

[36], [38] 

Information & Software Technology IST 

[3],[8],[9], 

[23],[45], 

[47] 

Empirical Software Engineering and Measurement ESEM [11] 

The joint meeting of the European Software Engineering Conference/ 

Symposium on the Foundation of Software Engineering 
ESEC/FSE [12] 

International Conference on Software Engineering & Knowledge Engineering SEKE [13] 

Empirical Software Engineering EMSE [14],[26] 

Computer Software and Applications Conference COMPSAC [16] 

Journal of Computer Science and Technology JCST [17] 

International Journal of 

Computer, Electrical, Automation, Control and Information Engineering 
IJCAS [19] 



International Conference on Information and Communication Technology for 

Competitive Strategies 
ICTCS [20] 

Automated Software Engineering ASE 
[27],[44], 

[46] 

Miscellaneous 

 

HPCC, 

SmartCity/DS

S/SIC/ICBDA/

ICML/TPAMI

/ECCE 

[22],[24], 

[33],[34], 

[35],[43] 

 

3 .3  Study  se l ec t io n  c r i t er i a  

Among approximately 50 related studies found, only 23 of them are considered in this study. 
The selection of the studies was done using the inclusion and exclusion criteria listed below:  

 

3 .3 .1  Inc lus io n  cr i t er ia  

 The paper should be an empirical study of the application of Machine learning 
techniques in software defect prediction. 

 The study must be published in 2015 or later.  

 The study must be a peer-reviewed full research paper published in an authentic 
journal or conference in the domain of software engineering or machine learning.  

3 .3 .2  Exc lus io n  cr i t er ia   

 Studies focused on topics other than the application of ML techniques in software 
defect prediction. 

 Grey Literature or in a language other than English.  

 Studies with unclear or invalid results. 

 Studies that are published in journals or conferences other than software engineering 
or machine learning domain.  

3 .4   Da ta  e xtra c t io n  

A form was designed including the article information and the research question for each 
primary study that was selected after considering the inclusion and exclusion criteria. The 
articles were then divided between 3 researchers. But before we cover all the studies, the 
data extracted by the researchers at each step were discussed in the group to guarantee the 
consistency between the researchers.  

3 .5   Da ta  Sy nthes i s  

The primary goal of data synthesis is to express the data obtained from figures and tables in 
the primary study articles in a way that can be compared with other results. Particula rly, this 
review aims to find the answer to the research question in such a way that can be interpreted 
and decided what machine learning models or software engineering metrics can do better 
than the others. 

 

4  Results  and Discussion  

In this section, we answer the research questions based on the information we gained from 
23 selected papers. 

 

4 .1   RQ1 :  Wha t  M L techni ques  ha v e  been  u sed  f o r  SDP?  

There have been different methods in machine learning literature, trying to address this 
issue. Previous studies believe that classification has a trivial impact on software defect 
prediction [28, 27, 1]. For example, [1] explores an analysis based on 42 studies to find out 



what factors have a significant impact on software defect prediction. They surprisingly 
report that the choice of classifiers has an impact of only 1.3 percent on SDF. Based on their 
analysis, the researcher group is the most significant factor in SDP. But, another study [4] 
believes that their result is biased through their target dataset. They state that the NASA 
dataset, which these studies are based upon, has some implausible noisy input, which 
misleads the results of classification methods. This paper proves that some classification 
methods outperform others, and there are different clusters of ML methods. Thus, 
considering their results, we discuss all classification methods and include what studies have 
done them so far. There is a wide range of machine learning methods that have been used for 
software defect prediction in different studies. Both supervised and supervised learning 
methods were used. 

 

4 .1 .1  Superv i se d  metho ds  

Table 3 shows supervised ML methods that were used in studied papers.  

Statistical Techniques: These techniques are based on probabilities, and they output the 
chance of each category for each software program. Major defined categories in SDP are 
defect-prone and not defect-prone. These techniques model the input data and try to find 
patterns in the data set; consequently, they are based on big assumptions. For instance, N aive 
Bayes is a statistical model that assumes that all predictors are independent of each other 
[14, 19, 17, 8, 15, 9, 26]. Also, there have been some studies that use logistic regression, 
which is also based on probabilities, as the predictor.  [13, 8, 15]. Moreover, the Bayesian 
Network is used in one study [8]. Also, non-parametric statistical methods, like the nearest 
neighborhood, have been adopted by some studies [10, 15]. These methods, like KNN, 
compute the distance between input data to find nearest neighbors to one data to classify it. 
Lazy learning and expensive testing are the most notable characteristics of this method.  

Decision Trees: These methods represent a tree as the model, and each node in the tree 
represents a rule for one feature. Leaf nodes are categorized into defective or non-defective. 
Each input data goes through a path from the root to a leaf node to be classified. Logistic 
Model Tree (LMT) and J48 are some examples of decision trees as the predictor in SDP 
previously [29, 30]. The results from using these methods have been considered in a prior  
study [4]. Another popular category of decision tree models is the random forest used in 
previous studies [15, 26, 16]. This model generates trees from random bootstraps of data and 
averages their results. 

Regression Methods: A number of prior studies have chosen SVM (Support-Vector-Machine) 
as their machine learning model [15, 8, 26]. SVM is a non-probabilistic binary linear 
classifier which finds a hyperplane to separate the defective or non-defective classes when 
used in SDP. One of the prior studies reviews the result of the Sequential Minimal 
Optimization(SMO) SVM technique [4]. 

Ensemble Methods: Ensemble methods use the result of different models to come up with 
another model for classifying examples. In our study, we found previous studies that adopted 
these methods for SDP: Max Pooling, Average Pooling [16], Bagging [31], AdaBoost [33], 
Rotation Forest [34], and Random Subspace [35]. Bagging consists of forming bootstraps of 
data and then aggregating their results. It uses voting or averaging of different subsets of 
data to predict the outcome. AdaBoost uses the output of different models to a weighted sum 
and performs multiple iterations with different weights and use voting for the f inal result. 
Rotation forest performs different feature extractions to subsets of data with the help of 
Principal Component Analysis (PCA). Then the newly generated set of features is used in the 
final ensemble. Moreover, Random Subspace creates a random forest of multiple decision 
trees and use it as the prediction model. 

Table 3. Supervised ML techniques 

ML technique Studies 

Naïve Bayes [14], [19], [17],[8], [15],[9], [26] 



Logistic Regression [13], [8], [15] 

Random Forest [15], [26], [16] 

Nearest Neighbour [10], [15] 

Decision Tree [26], [8] 

SVM [15], [8], [26], 

Decision Table [8] 

Bayesian Net (statistical) [8] 

Max voting [16] 

Average Voting [16] 

 

4 .1 . 2  Unsu perv i sed  met ho ds  

Table 4 shows unsupervised ML techniques.  

K-means: k-Partition is based on the distance of data points, assign them into k exclusive 
partitions or groups, where each partition represents a cluster. K -means is a subfamily of K-
Partition where each data point is assigned into the cluster according to the distance with the 
centroid of a cluster, which is the mean of all points within the cluster. The initial number of 
clusters is assigned manually. 

Neural-Gas clustering: Neural-Gas clustering is a competitive learning technique with 
SoftMax learning rule. Its inspiration comes from a type of neural network called SOM (self-
organizing map). Neural gas is similar to both neural network-based clustering and 
partitioned one. Neural gas gained popularity because of its robust convergence compared to 
online k-means clustering. It is mostly used in speech recognition and image processing for 
data compression or vector quantization.  

Fuzzy C-means: Fuzzy c-means (FCM) is a method of clustering which allows one piece of 
data to belong to two or more clusters. Assigns membership to each data point corresponding 
to each cluster center on the basis of the distance between the center and itself. This method 
is frequently used in pattern recognition.  

Clustering and labelling: The primary objective of CLA is to classify objects into relatively 
homogeneous groups based on the set of variables considered. Objects in a group are 
relatively similar in terms of these variables, and different from objects from other groups. 
Computes instances violation degree based on the relation between metric values and 
corresponding median values, then clustering by the violation or consistency information.  

CLAMI: Clustering by comparing each metric value with the corresponding median or 
average value. Based on CLA, add two extra steps: Metric selection and instance selection 
based on violation degree. 

Average Clustering and labelling: Clustering by metrics of instances violation score (MIVS), 
which is computed based on the relation between each metric value and their average metric 
value.  



Self-organizing maps: A self-organizing map (SOM) is a type of artificial neural network 
(ANN) that is trained using unsupervised learning to produce a low-dimensional (typically 
two-dimensional), discretized representation of the input space of the training samples, 
called a map, and is therefore a method to do dimensionality reduction.  

Threshold: Metric Threshold. It might be determined by experiences, rules, calculations, or 
machine learning, etc. Uses some metric thresholds to classify instances directly. e.g., given 
a metric threshold vector, if any metric of an instance exceeds the corresponding threshold, it 
will be defect-prone. 

Fuzzy self-organizing maps: In Fuzzy clustering, each data point can belong to two or more 
clusters. Fuzzy Self-Organizing Maps combines SOMs with the concept of fuzziness in 
fuzzy clustering.  

Spectral clustering: Makes use of the eigenvalues of the similarity matrix to reduce 
dimensionality before clustering. Partitions a dataset based on the connectivity between its 
nodes in a graph with spectral clustering. 

Expectation maximization clustering (EM): Gets probabilities of cluster memberships based 
on probability distributions. Finds the maximum likelihood by iteratively alternating 
between expectation step and maximization step.  

Metric ranking: Used for some change metrics in just in time prediction. Considers 1/Metric 
to rank instances in ascending order. 

 

Table 4. Unsupervised ML techniques 

ML technique Studies 

K-means [20], [21] 

Neural-Gas clustering [21] 

Fuzzy C-means [21] 

Clustering and labelling (CLA) [22], [44] 

CLA + Metric selection and instance 

selection based on violation degree 

(CLAMI) 

 

[22], [44] 

Average Clustering and labelling (ACL) [22], 

Self-organizing maps [22], [23] 

Threshold [8], [23], [44] 

Fuzzy self-organizing maps [24] 

Spectral Clustering [25] 



Expectation maximization clustering [25], [44] 

Metric ranking [45] 

 

4 .2   RQ2 :  Wha t  da ta se t s  ha v e  been  used  fo r  SDP?  Wha t  are  the  de fec t  

d i s t r ib ut io ns  in  the m?  

Two types of datasets can be used for SDP. First, publicly available datasets and second, 
private datasets. The first category of datasets is better since their results are repeatable. But, 
for the private datasets, the distribution of faults is not available. Below is the list of datasets 
that are used for studies. These datasets contain source codes as well as their label, which is 
defective or non-defective. 

 NASA dataset. This dataset is publicly available for researchers. The defect 
distribution is available too. Most of the studies use this dataset for their research. 
Also, there is a previous work that believes that this dataset contains noisy and 
implausible data, and prior studies have biased to this noisy data. [41].  

 PROMISE repository dataset: This dataset is publicly available and is also created 
by NASA to encourage repeatable, verifiable, refutable, and improvable predictive 
models of software engineering.  [40]. 

 Other open-source datasets like ANT, IVY, LUCENE, POI, TOMCAT, KCI, JEdit, 
Eclipse. 

In table 5, we represent the datasets that are used in different studies. Some studies use 
different datasets for file-level and change-level SDP. For instance, one study [5, 6] uses all 
java open source projects from the promise data set for the file -level defect prediction. The 
numbers of files of the projects in their file-level dataset range from150 to 1,046, and the 
buggy rates of the projects have a minimum value of 13.4% and a maximum value of 49.7%. 
However, they use different sets of data for change-level defect prediction. Linux kernel, 
PostgreSQL, Xorg, Jdt (from Eclipse), Lucene, and Jackrabbit are used for change-level 
defect prediction in this study. The defect distribution in these datasets are different.   

Table 5. Datasets 

Dataset Name Project Study 

NASA PROMISE, MDP [17], [19], [26], [21], [22], [25], [2], [4], [5], [6] 

Jureczko (JUR) Ant, Camel, Ivy, Log4j, POI, 

Synapse, JEdit, Xalan, etc. 

[8],[9],[10],[12],[13],[16],[23] 

AEEEM JDT core, JDT Eclipse, PDE 

Eclipse, Mylyn, Apache Lucence 

[12],[14],[21],[22],[23], [5], [6], [47] 

ReLink Apache HTTP Server, OpenIntents 

Safe, and ZXing 

[12],[22] 

SoftLab PostgreSQL (POS), Ruby on Rails 

(RUB), Rhino (RHI)). 

[24], [47], 

Miscellaneous Licq, GitHub, Linux kernel, 

Jackrabbit, Mozilla 

[14],[20], [5], [6], [47] 

 

 

4 .3   RQ3 :  Wha t  SE metr ic s ( f ea tures )  hav e  been  used  fo r  SDP?  

For predicting software defects, the first step is to find a way to characterize software 
programs with some metrics. Software engineering experts adopt various metrics to quantify 



software programs. Previous studies offer different software metrics, for example, object-
oriented metrics like Chidamber and Kemerer (CK) metrics [36], Process metrics like the 
number of changes, recent activity [37], Product metrics like size of program and complexity 
[38], Historical metrics for monitoring changes [38], and structural metrics like cyclomatic 
complexity or coupling [39]. However, in our review, all the above metrics were not adopted 
by researchers for SDP. Below is the list of software metrics categories that were chosen in 
studied works. 

Traditional metrics: These are the standard software engineering metrics that we exhibited 
above. They try to address the characteristics of software programs from different points of 
view, like size, complexity, structure, behavior, and the relation of different software 
components [36, 37, 38, 39]. 

Abstract Syntax Tree (AST): Derived feature. AST is a detailed tree representation of the 
Java source code. AST is utilized for extracting syntactic information from the source code.  

There are different nodes in AST: 

 nodes of method invocations and class instance creations  

 declaration nodes, i.e., method declarations, type declarations, and enum 
declarations 

 control-flow nodes such as while statements, catch clauses, if statements, throw 
statements, etc. 

Some studies [5, 6] create vectors of AST nodes and use those vectors as features.  

Semantic features:  Derived feature- These features cannot be found in the code. They are 
hidden deeply in the source code and they are useful for bug detection or program 
comprehension. Table 6 shows all metrics that were used in studied papers.  

 

4 .4   RQ4 :  Wha t  ty pes  o f  f ea ture  reduct io n  (metr i c s  reduct io n)  ha s  

been  use d  fo r  SDP?  

In order to consider only metrics related to fault-proneness in the prediction models, in [23] 
they performed univariate logistic regression analyses on the different metrics initially 
considered (SLOC, CBO, RFC, WMC, LCOM, DIT and NOC). The first conclusion we can 
draw is that SLOC, CBO, RFC, WMC and LCOM metrics are relevant for fault -proneness 
prediction. logistic regression was used to determine for each source code metric if it is good 
at determining the fault-proneness of a class. In another paper for determining the 
importance of the software metrics for the defect detection task, the information gain (IG) 
measure was used [24]. From the software metrics whose IG values were higher than a given 
threshold, a subset of metrics that measure different characteristics of the software system 
were finally selected. The initial set was all McCabe and Halstead metrics tha t finally 
halstead_vocabulary, total_operands, total_operators, executable_loc, halstead_length, 
total_loc, condition_count, branch_count and decision_count were selected. In CLAMI [44] 
metric selection was conducted based on the metric violation scores (MVS). Since the 
quality of defect prediction models is highly dependent on the quality of the metrics, metric 
selection to choose the most informative metrics for prediction models has been widely 
adopted in defect prediction. Metric selection in CLAMI is based on removing metrics that 
can minimize violations in the defect-proneness tendency of defect datasets. Not all metrics 
follow the defect-proneness tendency so that metric selection of CLAMI can be helpful to 
build a better prediction model. A violation is a metric value that does not follow the defect-
proneness tendency. Some supervised learning methods in order to select features, filter out 
infrequent AST nodes and consider code changes like code addition or the context of the 
code in the change [5, 6]. 

 

4 .5   RQ5 :  Wha t  per fo r ma n ce  mea s ures  ha v e  been  used  fo r  ev a lua t ing  

d i f f erent  metho ds?  

For answering this research question, we inspect different ways that studies have used to 
evaluate their software defect prediction method. Some studies have used more than one 



performance metric for making comparison or giving more fine-grained results about the 
performance. Table 7 shows all performance measures that were used in studied papers.  

 

5  Current research trends and SDP chal lenges  

 
In this section, we explore 3 main areas of challenges in SDP that are hot topics and research 

trends as well. 

 
5 .1   Fea ture  se l ec t io n  a nd  extra c t io n  

One of the most important factors in improving a machine learning model is to use proper 
features. Feature extraction, feature selection, and also deriving new features from source 
code are always a considerable part of researches in SDP literature. There are myriad of 
metrics to quantify software codes, and lots of them are introduced in the software 
engineering domain. Consequently, it would be overwhelming for software engineering 
practitioners to select the best features for their software defect predictor model. In addition, 
software defect data are hindered by obstacles like redundancy, correlation, feature 
irrelevance, and missing samples. Some prior [5, 6] studies focus on extracting semantic 
features from source code [5, 6]. They believe that the syntactic data of the source code can 
not cover the whole characteristics of the code. So they try to get the semantics of the source 
code with the help of existing syntactic features. They show that the accuracy of the SDP 
model significantly increases while they are trained with semantic features. Moreover, some 
other works in literature contribute to the machine learning part, but they also introduce a 
good set of features that fit their model best [4]. Some studies select features by combining 
different methods of feature selections [48, 49]. 

 

5 .2   Dea l ing  w i th  i mba la nc ed  Da ta  

Imbalanced classes are a common problem in machine learning classification where there is 
a disproportionate ratio of observations in each class. Class imbalance can be found in many 
different areas including medical diagnosis, spam filtering, and fraud detection. Most 
machine learning algorithms work best when the number of samples in each class are about 
equal. This is because most algorithms are designed to maximize accuracy and reduce error. 
There are various approaches that could be taken to deal with imbalanced data problem:  

Change the performance metrics: Accuracy is not the best metric to use when evaluating 
imbalanced datasets as it can be very misleading. Confusion matrix, precision, recall and F -
measure are better choices [15]. Confusion matrix is a table showing correct predictions and 
types of incorrect predictions. Precision is the number of true positives divided by all 
positive predictions. Precision is also called Positive Predictive Value. It is a measure o f a 
classifier’s exactness. Low precision indicates a high number of false positives. Recall is the 
number of true positives divided by the number of positive values in the test data. Recall is 
also called Sensitivity or the True Positive Rate. It is a measure of a classifier’s 
completeness. Low recall indicates a high number of false negatives. F1 -measure is the 
weighted average of precision and recall. 

Change the algorithm: While in every machine learning problem, it ’s a good rule of thumb to 
try a variety of algorithms, it can be especially beneficial with imbalanced datasets. Decision 
trees frequently perform well on imbalanced data [32]. 

Oversample minority class: Oversampling can be defined as adding more copies of the 
minority class. Oversampling can be a good choice when you don’t have a ton of data to 
work with [43]. 

 

 

 

 



Table 6. Software metric 

 

Metrics category metrics 
Description of 

metrics 
Interpretation Studies 

Size (LOC counts) 

LOC LOC_total, LOC_blank, LOC_comment, 

LOC_code_and_comment, LOC_executable, 

andNumberoflines 

Measures the size of 

the software 

Softwares with more 

lines of codes have a 

higher probability 

for being defective. 

[45],[21], [22], [9] ,[26], 

[12], [15], [17],[8], [10], 

[14], [16] 

McCabe Software 

Metrics 

cyclomatic_complexity, cyclomatic_density, 

design_complexity, essential_complexity, and 

pathological_complexity, max_cc and avg_cc 

Measures of the 

branching complexity 

of the software module 

More complexity 

means bigger 

chance of being 

defective. 

[24], [25], [44], [21], [22] 

Halstead attributes 

content, difficulty, effort, errorest, length, level, 

progtime, volume, num_operands, 

num_operators,num_unique_operands, 

num_unique_operators 

Estimates of the 

complexity of reading 

a software module 

based on the 

vocabulary used 

(e.g.,number of 

operators and 

operands). 

More complexity 

means bigger 

chance of being 

defective. 

[24], [25], [44], [21], [22] 

CK 
wmc, dit, cbo, noc, lcom, rfc, ic, cbm, amc, 

lcom3 

Measures of the 

complexity of a class 

within an object-

oriented system design 

More complexity 

means bigger 

chance of being 

defective. 

[21], [22], [20], [23] 

QMOOD dam, moa, mfa, cam, npm 

Measures of the 

behavioural and 

structural design 

properties of classes, 

objects, and the 

relations between 

them. 

More QMOOD 

means higher 

quality code.  

Software codes with 

lower QMOOD are 

prone to defects. 

[21], [22] 

Martin’s  ca, ce 

Measures of the 

relationship between 

software components, 

including calls as well 

as number of instances 

Higher values 

indicate low 

encapsulation,reusab

ility, and 

maintainability [45], 

which may lead to 

defects 

[21], [22] 

Object Orient Metrics 
DIT, LCOM, RFC, NOC, CBO, CF, AIF, MIF, 

AHF 

Measures Depth of 

Inheritance Tree,  
N/A 

[20], [8], [10], [12], [14], 

[16], [12], [15],[23] 

Miscellaneous 

branch_count, call_pairs, 

condition_count,decision_count, 

decision_density, design_density,edge_count, 

essential_density, 

parametercount,maintenance_severity, 

modified_condition_count,multiple_condition_c

ount, 

global_data_density,global_data_complexity, 

percent_comments,normalized_cyclomatic_com

plexity and node_count 

Different metrics N/A [45], [21], [22], [14], [19] 



Table 7. Performance measures 

Measure Description Definition Studies 

Precision 
The proportion of the predicted 
positive 

cases that were correct 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

[8], [14], [20], 

[22], [25], [44] 

Recall, pd 
The proportion of positive cases 

that were correctly identified 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

[8], [26], [10], 

[14], [15], [17], 

[20], [22], [25], 
[44] 

Probability of 
False 

Alarm, pf 

Proportion of non-faulty units 
incorrectly 

classified as fault-prone 

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

[9], [26], [10], 

[14], [15], [17] 

AUC, Area 
Under 

the Curve 

The area under the receiver 

operating 
characteristics curve. 

Independent of the 

cutoff value 

N/A 
[26], [12], [14], 
[19], 20], [21], 

[24], [44] 

F-measure 
Harmonic mean of precision and 

recall 

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

[8], [14], [15], 

[16], [22], [25], 
[44], [45] 

G-measure Harmonic mean of pd and (1-pf) 
2 × 𝑝𝑑 × (1 − 𝑝𝑓)

𝑝𝑑 + (1 − 𝑝𝑓)
 [10], [14] 

Balance 

The euclidean distance from the 

(pd, pf) 
point to (pd=1, pf=0) in the ROC 

curve 

1 −√
(𝑝𝑓)2 + (1 − 𝑝𝑑)2

2
 [17] 

MCC 

A compound measure 

considering all true 

and false positives and negatives 

𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 [9], [14], [15] 

Specificity 

Is defined as the proportion of 

actual negatives, which got 
predicted as the negative 

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 [20] 

Accuracy 
a ratio of correctly predicted 
observation to the total 

observations 

 
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

[20], [25] 

FP rate 
refers to the expectancy of the 

false positive ratio 

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 [23] 

FN rate 

The false negative rate is the 

proportion of the individuals with 

a known positive condition for 
which the test result is negative. 

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 [23] 

G-mean 

Is a metric that measures the 
balance between classification 

performances on both the 

majority and minority classes. A 
low G-Mean is an indication of a 

poor performance. 

N/A [23] 

Miscellaneous 
H-measure, Cost, 

Hubert Stat. Procedure 
N/A 

[26] 

  

 



Change the algorithm: While in every machine learning problem, it ’s a good rule of thumb to 
try a variety of algorithms, it can be especially beneficial with imbalanced datasets. Decision 
trees frequently perform well on imbalanced data [32]. 

Oversample minority class: Oversampling can be defined as adding more copies of the 
minority class. Oversampling can be a good choice when you don’t have a ton of data to 
work with [43]. 

Undersample majority class: Undersampling can be defined as removing some observations 
of the majority class. Undersampling can be a good choice when you have a ton of data -
think millions of rows [43]. But a drawback is that we are removing information that may be 
valuable. This could lead to underfitting and poor generalization to the test set. 

Generate synthetic samples: A technique similar to upsampling is to create synthetic 
samples. For example, some methods use a nearest neighbors algorithm to generate new and 
synthetic data we can use for training our model [43]. Again, it’s important to generate the 
new samples only in the training set to ensure our model generalizes well to unseen data.  

 

5 .3   Cro ss -Pro jec t  Defec t  Pred ic t io n  

It’s not always possible for companies to train a model based on their local data to predict the fault 

in their programs. The lack of local data or the difficulty to collect it is one important reason why 

companies are reluctant to use defect prediction. Another issue is that companies change their 

practice in the course of time and current local data might not be representative in the near future 

so, they are not interested in organizing all these local data. One alternative is to use models that 

are trained based on similar projects and then use it to predict the defects in another project. This 

approach produces fairly satisfying results and it is financially reasonable which makes it very 

popular especially in the last recent years. Researchers have been interested in this topic recently. 

He et al. [8] showed that simple classifiers like NB can do as well as the other modeling method in 

CPDP. Also, they showed that NB and BN are quiet stable and produce reasonable results for 

different metric sets in source and target data. Chen et al. [13] tried a regression model on six- 

open-source projects and concluded that a good regression model can perform well in many cases 

in comparison to more complicated models like random forests. Chen et al. [9] proposed a novel 

approach (Double Transfer Boosting DTB) to enhance the prediction models in CCDP. This 

approach involves data gravitation re-weight and transfer boosting that removes negative samples. 

They also offered a model (VCB-SVM) which is basically a model based on SVB and boosting 

that can address class imbalance issues. Peters et al. [10] presented LACE2 which is a multiparty 

sharing protocol that allows companies to predict the defect in their codes even when they don’t 

have enough local data to build a model based on it, Nam et al. [12] proposed a heterogeneous 

defect prediction model (HDP) based on metric matching that can predict defects in software as 

good as other approaches. 

 

6  Future work and l imitations  

This review is based on 23 prior studies that are published later than 2015 and does not 
cover the whole literature. Indeed, more fine-grained research should be done to make a 
general conclusion about challenges and popular methods and metrics in SDP.  A potential 
future work for this review would be making a comparison between the performance results 
of different machine learning models in SDP when they are used by the same set of features 
and databases. Also, the same comparison can be made for different databases and different 
sets of features. 

 

7  Conclusion  

This paper presents a review of different machine learning models, datasets, and features 
used for software defect prediction. Machine learning models in SDP are categorized into 
supervised and unsupervised models, and each category and related prior studies are 
explained. An overview of software engineering metrics as features of SDP is provided. 



Different categories of code metrics in SDP are depicted alongside the research works that 
based their model on them. Furthermore, different performance evaluation metrics for SDP 
machine learning models have been introduced as well as the papers that use them. Finally, 
recent challenges and trends in SDP are described, and some examples for each of them are 
provided. 
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