
Machine Learning in Software Defect
Prediction – A Literature Survey

 Amirhosein Abbasi Behzad Aminian Marjane Namavar
 ECE Dept. Mech. Eng. Dept. ECE Dept.
 UBC UBC UBC
 amirosein@ece.ubc.ca aminian.bz@gmail.com marjane@ece.ubc.ca

Abstract

Software Defect Prediction(SDP) has been a popular topic in both the
Software engineering (SE) and Machine Learning (ML) domain because of
its significant contribution toward reducing the cost and time of projects.
Researchers have published many individual studies for various ML
methods for SDP over the past few years. In addition, several survey
articles have systematically reviewed the literature too. The last review
article on applications of machine learning in defect prediction is for 2014.
Also, there has been some review articles for unsupervised methods and
cross-project challenge in SDP in recent years. However, a review article
that covers the most recent studies from 2014 to 2019, along with the
identification of the current trends and issues, is needed. In this study, we
reviewed 23 articles in the domain of SDP to investigate the use of different
ML models, defect data features, and performance evaluation in SDP
papers. Additionally, the latest trends in SDP are introduced, and detailed
information on what has been done so far to address these challenges is
provided.

1 Introduction

Software defect prediction is one of the most critical steps in software development life -
cycle. It is super-useful for software practitioners to be aware of potential defects in their
software program. Locating potential defects in software projects can help to decide on
designating more resources for testing and developing problematic projects or components.
Software quality assurance experts would focus more on parts of programs with higher
likelihoods of being defect-pone. The term "Software defect" is defined as a difference
between what is expected and what is happening after production. This variance can be
happened due to an internal or external problem. A software defect is usually introduced to
software because of a human error, which causes the program to perform unexpectedly.
Different factors can affect how much a software program is prone to defects. Program
complexity, size, structure, and design of different components, classes, or objects can affect
the chance of software to have defects. The relation of different classes, objects, or
components should be considered when predicting the chance of software to be defect -prone.
There have been different machine learning methods trying to come up with accurate
solutions for defect prediction. The mentioned metrics can be obtained from the source code
of software programs and then be used to create a machine learning model to predict the rate
of defects for new programs.

In this research, we have a review on articles published from 2015 or later. We considered 23
articles from the last recent years. We categorized them based on the machine learning
techniques they used, feature metrics, database, performance evaluation metrics and the
contribution in the literature. What makes this study different from the previous ones is that
we have identified recent trends and challenges in defect prediction domain and individually
studied what is done to deal with them and what the probable solutions are.

2 Related work

In 2011, Catal et al. [50] had a systematic review on machine learning in defect prediction.
They reviewed 90 articles based on their contents and categorized them. In 2015 Malhotra et
al. [2] had a comprehensive review on using machine learning approaches for fault
prediction in software. Their group reviewed 64 primary papers from 1991 to 2014 and
organized different machine learning techniques with respect to their model, metric,
performance and database. Similar studies have been done in this area of research. For
example, Li et al. [3] had a review only on unsupervised techniques used in defect
prediction.

3 Methodology

In this section we briefly explain the approach that has been taken in order to perform this
literature survey project. To reach our study goals, we followed the Systematic Literature
Review (SLR) guideline suggested by Hall et al. [32]. this procedure consists of several
steps such as identification of the research questions, strategic article search, article
selections and so on. Figure 1 is a schematic diagram of the steps taken to conduct this
research.

Figure 1: Methodology

3 .1 Resea rch q ues t io ns

Based on previous literature reviews on similar subjects and by having a quick review of
some articles we have carefully defined 5 study questions that help us achieve our goal
which is to summarize, analyze and evaluate studies regarding their machine learning
techniques, metrics, feature selection approach, and performance evaluation. Research
questions are tabulated in table 1.

Table 1. Research questions

Research Question Motivation

RQ1. What modeling techniques are used?
To identify the common techniques that are being used for

fault prediction.

RQ2. What dataset is used? To find appropriate datasets for software fault prediction.

RQ3. Which software metrics are commonly used for To find out the metric that works well for fault prediction.

defect prediction?

RQ4. What is the feature extraction technique? Identify which features perform the best.

RQ5. Which performance evaluation criteria are used?
Investigate the performance of the ML technique in prediction
software defects.

3 .2 Sea rch s t ra teg y

After identifying our research goal and questions, we defined some subtopic of SFP like

cross-project defect prediction (CPDP), within project defect prediction (WPDP) and

classification techniques to mention but a few. We then searched for the related studies in the

most famous software engineering journals. In the table 2, the distribution of papers among

journals and conferences is presented. One of the priorities in the selection of papers is the

impact factor of its' journal or conference. All of the studies in our review are selected from

renowned software engineering or machine learning journals and conferences. The majority

of studies (More than 60 percent) are selected from the top three software engineering

journals and conferences. The following electronic databases were used for finding the

primary studies:

 IEEE Xplore

 ScienceDirect

 Research gate

 Wiley Online Library

 SpringerLink

Table 2. Search Strategy

Journal or Conference Abbreviation Studies

International Conference on Software Engineering ICSE
[4],[5],[10],

[21],[37]

IEEE Transactions on Software Engineering TSE

[1],[2],[6],

[7],[15],[18],

[28],[32],

[36], [38]

Information & Software Technology IST

[3],[8],[9],

[23],[45],

[47]

Empirical Software Engineering and Measurement ESEM [11]

The joint meeting of the European Software Engineering Conference/

Symposium on the Foundation of Software Engineering
ESEC/FSE [12]

International Conference on Software Engineering & Knowledge Engineering SEKE [13]

Empirical Software Engineering EMSE [14],[26]

Computer Software and Applications Conference COMPSAC [16]

Journal of Computer Science and Technology JCST [17]

International Journal of

Computer, Electrical, Automation, Control and Information Engineering
IJCAS [19]

International Conference on Information and Communication Technology for

Competitive Strategies
ICTCS [20]

Automated Software Engineering ASE
[27],[44],

[46]

Miscellaneous

HPCC,

SmartCity/DS

S/SIC/ICBDA/

ICML/TPAMI

/ECCE

[22],[24],

[33],[34],

[35],[43]

3 .3 Study se l ec t io n c r i t er i a

Among approximately 50 related studies found, only 23 of them are considered in this study.
The selection of the studies was done using the inclusion and exclusion criteria listed below:

3 .3 .1 Inc lus io n cr i t er ia

 The paper should be an empirical study of the application of Machine learning
techniques in software defect prediction.

 The study must be published in 2015 or later.

 The study must be a peer-reviewed full research paper published in an authentic
journal or conference in the domain of software engineering or machine learning.

3 .3 .2 Exc lus io n cr i t er ia

 Studies focused on topics other than the application of ML techniques in software
defect prediction.

 Grey Literature or in a language other than English.

 Studies with unclear or invalid results.

 Studies that are published in journals or conferences other than software engineering
or machine learning domain.

3 .4 Da ta e xtra c t io n

A form was designed including the article information and the research question for each
primary study that was selected after considering the inclusion and exclusion criteria. The
articles were then divided between 3 researchers. But before we cover all the studies, the
data extracted by the researchers at each step were discussed in the group to guarantee the
consistency between the researchers.

3 .5 Da ta Sy nthes i s

The primary goal of data synthesis is to express the data obtained from figures and tables in
the primary study articles in a way that can be compared with other results. Particula rly, this
review aims to find the answer to the research question in such a way that can be interpreted
and decided what machine learning models or software engineering metrics can do better
than the others.

4 Results and Discussion

In this section, we answer the research questions based on the information we gained from
23 selected papers.

4 .1 RQ1 : Wha t M L techni ques ha v e been u sed f o r SDP?

There have been different methods in machine learning literature, trying to address this
issue. Previous studies believe that classification has a trivial impact on software defect
prediction [28, 27, 1]. For example, [1] explores an analysis based on 42 studies to find out

what factors have a significant impact on software defect prediction. They surprisingly
report that the choice of classifiers has an impact of only 1.3 percent on SDF. Based on their
analysis, the researcher group is the most significant factor in SDP. But, another study [4]
believes that their result is biased through their target dataset. They state that the NASA
dataset, which these studies are based upon, has some implausible noisy input, which
misleads the results of classification methods. This paper proves that some classification
methods outperform others, and there are different clusters of ML methods. Thus,
considering their results, we discuss all classification methods and include what studies have
done them so far. There is a wide range of machine learning methods that have been used for
software defect prediction in different studies. Both supervised and supervised learning
methods were used.

4 .1 .1 Superv i se d metho ds

Table 3 shows supervised ML methods that were used in studied papers.

Statistical Techniques: These techniques are based on probabilities, and they output the
chance of each category for each software program. Major defined categories in SDP are
defect-prone and not defect-prone. These techniques model the input data and try to find
patterns in the data set; consequently, they are based on big assumptions. For instance, N aive
Bayes is a statistical model that assumes that all predictors are independent of each other
[14, 19, 17, 8, 15, 9, 26]. Also, there have been some studies that use logistic regression,
which is also based on probabilities, as the predictor. [13, 8, 15]. Moreover, the Bayesian
Network is used in one study [8]. Also, non-parametric statistical methods, like the nearest
neighborhood, have been adopted by some studies [10, 15]. These methods, like KNN,
compute the distance between input data to find nearest neighbors to one data to classify it.
Lazy learning and expensive testing are the most notable characteristics of this method.

Decision Trees: These methods represent a tree as the model, and each node in the tree
represents a rule for one feature. Leaf nodes are categorized into defective or non-defective.
Each input data goes through a path from the root to a leaf node to be classified. Logistic
Model Tree (LMT) and J48 are some examples of decision trees as the predictor in SDP
previously [29, 30]. The results from using these methods have been considered in a prior
study [4]. Another popular category of decision tree models is the random forest used in
previous studies [15, 26, 16]. This model generates trees from random bootstraps of data and
averages their results.

Regression Methods: A number of prior studies have chosen SVM (Support-Vector-Machine)
as their machine learning model [15, 8, 26]. SVM is a non-probabilistic binary linear
classifier which finds a hyperplane to separate the defective or non-defective classes when
used in SDP. One of the prior studies reviews the result of the Sequential Minimal
Optimization(SMO) SVM technique [4].

Ensemble Methods: Ensemble methods use the result of different models to come up with
another model for classifying examples. In our study, we found previous studies that adopted
these methods for SDP: Max Pooling, Average Pooling [16], Bagging [31], AdaBoost [33],
Rotation Forest [34], and Random Subspace [35]. Bagging consists of forming bootstraps of
data and then aggregating their results. It uses voting or averaging of different subsets of
data to predict the outcome. AdaBoost uses the output of different models to a weighted sum
and performs multiple iterations with different weights and use voting for the f inal result.
Rotation forest performs different feature extractions to subsets of data with the help of
Principal Component Analysis (PCA). Then the newly generated set of features is used in the
final ensemble. Moreover, Random Subspace creates a random forest of multiple decision
trees and use it as the prediction model.

Table 3. Supervised ML techniques

ML technique Studies

Naïve Bayes [14], [19], [17],[8], [15],[9], [26]

Logistic Regression [13], [8], [15]

Random Forest [15], [26], [16]

Nearest Neighbour [10], [15]

Decision Tree [26], [8]

SVM [15], [8], [26],

Decision Table [8]

Bayesian Net (statistical) [8]

Max voting [16]

Average Voting [16]

4 .1 . 2 Unsu perv i sed met ho ds

Table 4 shows unsupervised ML techniques.

K-means: k-Partition is based on the distance of data points, assign them into k exclusive
partitions or groups, where each partition represents a cluster. K -means is a subfamily of K-
Partition where each data point is assigned into the cluster according to the distance with the
centroid of a cluster, which is the mean of all points within the cluster. The initial number of
clusters is assigned manually.

Neural-Gas clustering: Neural-Gas clustering is a competitive learning technique with
SoftMax learning rule. Its inspiration comes from a type of neural network called SOM (self-
organizing map). Neural gas is similar to both neural network-based clustering and
partitioned one. Neural gas gained popularity because of its robust convergence compared to
online k-means clustering. It is mostly used in speech recognition and image processing for
data compression or vector quantization.

Fuzzy C-means: Fuzzy c-means (FCM) is a method of clustering which allows one piece of
data to belong to two or more clusters. Assigns membership to each data point corresponding
to each cluster center on the basis of the distance between the center and itself. This method
is frequently used in pattern recognition.

Clustering and labelling: The primary objective of CLA is to classify objects into relatively
homogeneous groups based on the set of variables considered. Objects in a group are
relatively similar in terms of these variables, and different from objects from other groups.
Computes instances violation degree based on the relation between metric values and
corresponding median values, then clustering by the violation or consistency information.

CLAMI: Clustering by comparing each metric value with the corresponding median or
average value. Based on CLA, add two extra steps: Metric selection and instance selection
based on violation degree.

Average Clustering and labelling: Clustering by metrics of instances violation score (MIVS),
which is computed based on the relation between each metric value and their average metric
value.

Self-organizing maps: A self-organizing map (SOM) is a type of artificial neural network
(ANN) that is trained using unsupervised learning to produce a low-dimensional (typically
two-dimensional), discretized representation of the input space of the training samples,
called a map, and is therefore a method to do dimensionality reduction.

Threshold: Metric Threshold. It might be determined by experiences, rules, calculations, or
machine learning, etc. Uses some metric thresholds to classify instances directly. e.g., given
a metric threshold vector, if any metric of an instance exceeds the corresponding threshold, it
will be defect-prone.

Fuzzy self-organizing maps: In Fuzzy clustering, each data point can belong to two or more
clusters. Fuzzy Self-Organizing Maps combines SOMs with the concept of fuzziness in
fuzzy clustering.

Spectral clustering: Makes use of the eigenvalues of the similarity matrix to reduce
dimensionality before clustering. Partitions a dataset based on the connectivity between its
nodes in a graph with spectral clustering.

Expectation maximization clustering (EM): Gets probabilities of cluster memberships based
on probability distributions. Finds the maximum likelihood by iteratively alternating
between expectation step and maximization step.

Metric ranking: Used for some change metrics in just in time prediction. Considers 1/Metric
to rank instances in ascending order.

Table 4. Unsupervised ML techniques

ML technique Studies

K-means [20], [21]

Neural-Gas clustering [21]

Fuzzy C-means [21]

Clustering and labelling (CLA) [22], [44]

CLA + Metric selection and instance

selection based on violation degree

(CLAMI)

[22], [44]

Average Clustering and labelling (ACL) [22],

Self-organizing maps [22], [23]

Threshold [8], [23], [44]

Fuzzy self-organizing maps [24]

Spectral Clustering [25]

Expectation maximization clustering [25], [44]

Metric ranking [45]

4 .2 RQ2 : Wha t da ta se t s ha v e been used fo r SDP? Wha t are the de fec t

d i s t r ib ut io ns in the m?

Two types of datasets can be used for SDP. First, publicly available datasets and second,
private datasets. The first category of datasets is better since their results are repeatable. But,
for the private datasets, the distribution of faults is not available. Below is the list of datasets
that are used for studies. These datasets contain source codes as well as their label, which is
defective or non-defective.

 NASA dataset. This dataset is publicly available for researchers. The defect
distribution is available too. Most of the studies use this dataset for their research.
Also, there is a previous work that believes that this dataset contains noisy and
implausible data, and prior studies have biased to this noisy data. [41].

 PROMISE repository dataset: This dataset is publicly available and is also created
by NASA to encourage repeatable, verifiable, refutable, and improvable predictive
models of software engineering. [40].

 Other open-source datasets like ANT, IVY, LUCENE, POI, TOMCAT, KCI, JEdit,
Eclipse.

In table 5, we represent the datasets that are used in different studies. Some studies use
different datasets for file-level and change-level SDP. For instance, one study [5, 6] uses all
java open source projects from the promise data set for the file -level defect prediction. The
numbers of files of the projects in their file-level dataset range from150 to 1,046, and the
buggy rates of the projects have a minimum value of 13.4% and a maximum value of 49.7%.
However, they use different sets of data for change-level defect prediction. Linux kernel,
PostgreSQL, Xorg, Jdt (from Eclipse), Lucene, and Jackrabbit are used for change-level
defect prediction in this study. The defect distribution in these datasets are different.

Table 5. Datasets

Dataset Name Project Study

NASA PROMISE, MDP [17], [19], [26], [21], [22], [25], [2], [4], [5], [6]

Jureczko (JUR) Ant, Camel, Ivy, Log4j, POI,

Synapse, JEdit, Xalan, etc.

[8],[9],[10],[12],[13],[16],[23]

AEEEM JDT core, JDT Eclipse, PDE

Eclipse, Mylyn, Apache Lucence

[12],[14],[21],[22],[23], [5], [6], [47]

ReLink Apache HTTP Server, OpenIntents

Safe, and ZXing

[12],[22]

SoftLab PostgreSQL (POS), Ruby on Rails

(RUB), Rhino (RHI)).

[24], [47],

Miscellaneous Licq, GitHub, Linux kernel,

Jackrabbit, Mozilla

[14],[20], [5], [6], [47]

4 .3 RQ3 : Wha t SE metr ic s (f ea tures) hav e been used fo r SDP?

For predicting software defects, the first step is to find a way to characterize software
programs with some metrics. Software engineering experts adopt various metrics to quantify

software programs. Previous studies offer different software metrics, for example, object-
oriented metrics like Chidamber and Kemerer (CK) metrics [36], Process metrics like the
number of changes, recent activity [37], Product metrics like size of program and complexity
[38], Historical metrics for monitoring changes [38], and structural metrics like cyclomatic
complexity or coupling [39]. However, in our review, all the above metrics were not adopted
by researchers for SDP. Below is the list of software metrics categories that were chosen in
studied works.

Traditional metrics: These are the standard software engineering metrics that we exhibited
above. They try to address the characteristics of software programs from different points of
view, like size, complexity, structure, behavior, and the relation of different software
components [36, 37, 38, 39].

Abstract Syntax Tree (AST): Derived feature. AST is a detailed tree representation of the
Java source code. AST is utilized for extracting syntactic information from the source code.

There are different nodes in AST:

 nodes of method invocations and class instance creations

 declaration nodes, i.e., method declarations, type declarations, and enum
declarations

 control-flow nodes such as while statements, catch clauses, if statements, throw
statements, etc.

Some studies [5, 6] create vectors of AST nodes and use those vectors as features.

Semantic features: Derived feature- These features cannot be found in the code. They are
hidden deeply in the source code and they are useful for bug detection or program
comprehension. Table 6 shows all metrics that were used in studied papers.

4 .4 RQ4 : Wha t ty pes o f f ea ture reduct io n (metr i c s reduct io n) ha s

been use d fo r SDP?

In order to consider only metrics related to fault-proneness in the prediction models, in [23]
they performed univariate logistic regression analyses on the different metrics initially
considered (SLOC, CBO, RFC, WMC, LCOM, DIT and NOC). The first conclusion we can
draw is that SLOC, CBO, RFC, WMC and LCOM metrics are relevant for fault -proneness
prediction. logistic regression was used to determine for each source code metric if it is good
at determining the fault-proneness of a class. In another paper for determining the
importance of the software metrics for the defect detection task, the information gain (IG)
measure was used [24]. From the software metrics whose IG values were higher than a given
threshold, a subset of metrics that measure different characteristics of the software system
were finally selected. The initial set was all McCabe and Halstead metrics tha t finally
halstead_vocabulary, total_operands, total_operators, executable_loc, halstead_length,
total_loc, condition_count, branch_count and decision_count were selected. In CLAMI [44]
metric selection was conducted based on the metric violation scores (MVS). Since the
quality of defect prediction models is highly dependent on the quality of the metrics, metric
selection to choose the most informative metrics for prediction models has been widely
adopted in defect prediction. Metric selection in CLAMI is based on removing metrics that
can minimize violations in the defect-proneness tendency of defect datasets. Not all metrics
follow the defect-proneness tendency so that metric selection of CLAMI can be helpful to
build a better prediction model. A violation is a metric value that does not follow the defect-
proneness tendency. Some supervised learning methods in order to select features, filter out
infrequent AST nodes and consider code changes like code addition or the context of the
code in the change [5, 6].

4 .5 RQ5 : Wha t per fo r ma n ce mea s ures ha v e been used fo r ev a lua t ing

d i f f erent metho ds?

For answering this research question, we inspect different ways that studies have used to
evaluate their software defect prediction method. Some studies have used more than one

performance metric for making comparison or giving more fine-grained results about the
performance. Table 7 shows all performance measures that were used in studied papers.

5 Current research trends and SDP chal lenges

In this section, we explore 3 main areas of challenges in SDP that are hot topics and research

trends as well.

5 .1 Fea ture se l ec t io n a nd extra c t io n

One of the most important factors in improving a machine learning model is to use proper
features. Feature extraction, feature selection, and also deriving new features from source
code are always a considerable part of researches in SDP literature. There are myriad of
metrics to quantify software codes, and lots of them are introduced in the software
engineering domain. Consequently, it would be overwhelming for software engineering
practitioners to select the best features for their software defect predictor model. In addition,
software defect data are hindered by obstacles like redundancy, correlation, feature
irrelevance, and missing samples. Some prior [5, 6] studies focus on extracting semantic
features from source code [5, 6]. They believe that the syntactic data of the source code can
not cover the whole characteristics of the code. So they try to get the semantics of the source
code with the help of existing syntactic features. They show that the accuracy of the SDP
model significantly increases while they are trained with semantic features. Moreover, some
other works in literature contribute to the machine learning part, but they also introduce a
good set of features that fit their model best [4]. Some studies select features by combining
different methods of feature selections [48, 49].

5 .2 Dea l ing w i th i mba la nc ed Da ta

Imbalanced classes are a common problem in machine learning classification where there is
a disproportionate ratio of observations in each class. Class imbalance can be found in many
different areas including medical diagnosis, spam filtering, and fraud detection. Most
machine learning algorithms work best when the number of samples in each class are about
equal. This is because most algorithms are designed to maximize accuracy and reduce error.
There are various approaches that could be taken to deal with imbalanced data problem:

Change the performance metrics: Accuracy is not the best metric to use when evaluating
imbalanced datasets as it can be very misleading. Confusion matrix, precision, recall and F -
measure are better choices [15]. Confusion matrix is a table showing correct predictions and
types of incorrect predictions. Precision is the number of true positives divided by all
positive predictions. Precision is also called Positive Predictive Value. It is a measure o f a
classifier’s exactness. Low precision indicates a high number of false positives. Recall is the
number of true positives divided by the number of positive values in the test data. Recall is
also called Sensitivity or the True Positive Rate. It is a measure of a classifier’s
completeness. Low recall indicates a high number of false negatives. F1 -measure is the
weighted average of precision and recall.

Change the algorithm: While in every machine learning problem, it ’s a good rule of thumb to
try a variety of algorithms, it can be especially beneficial with imbalanced datasets. Decision
trees frequently perform well on imbalanced data [32].

Oversample minority class: Oversampling can be defined as adding more copies of the
minority class. Oversampling can be a good choice when you don’t have a ton of data to
work with [43].

Table 6. Software metric

Metrics category metrics
Description of

metrics
Interpretation Studies

Size (LOC counts)

LOC LOC_total, LOC_blank, LOC_comment,

LOC_code_and_comment, LOC_executable,

andNumberoflines

Measures the size of

the software

Softwares with more

lines of codes have a

higher probability

for being defective.

[45],[21], [22], [9] ,[26],

[12], [15], [17],[8], [10],

[14], [16]

McCabe Software

Metrics

cyclomatic_complexity, cyclomatic_density,

design_complexity, essential_complexity, and

pathological_complexity, max_cc and avg_cc

Measures of the

branching complexity

of the software module

More complexity

means bigger

chance of being

defective.

[24], [25], [44], [21], [22]

Halstead attributes

content, difficulty, effort, errorest, length, level,

progtime, volume, num_operands,

num_operators,num_unique_operands,

num_unique_operators

Estimates of the

complexity of reading

a software module

based on the

vocabulary used

(e.g.,number of

operators and

operands).

More complexity

means bigger

chance of being

defective.

[24], [25], [44], [21], [22]

CK
wmc, dit, cbo, noc, lcom, rfc, ic, cbm, amc,

lcom3

Measures of the

complexity of a class

within an object-

oriented system design

More complexity

means bigger

chance of being

defective.

[21], [22], [20], [23]

QMOOD dam, moa, mfa, cam, npm

Measures of the

behavioural and

structural design

properties of classes,

objects, and the

relations between

them.

More QMOOD

means higher

quality code.

Software codes with

lower QMOOD are

prone to defects.

[21], [22]

Martin’s ca, ce

Measures of the

relationship between

software components,

including calls as well

as number of instances

Higher values

indicate low

encapsulation,reusab

ility, and

maintainability [45],

which may lead to

defects

[21], [22]

Object Orient Metrics
DIT, LCOM, RFC, NOC, CBO, CF, AIF, MIF,

AHF

Measures Depth of

Inheritance Tree,
N/A

[20], [8], [10], [12], [14],

[16], [12], [15],[23]

Miscellaneous

branch_count, call_pairs,

condition_count,decision_count,

decision_density, design_density,edge_count,

essential_density,

parametercount,maintenance_severity,

modified_condition_count,multiple_condition_c

ount,

global_data_density,global_data_complexity,

percent_comments,normalized_cyclomatic_com

plexity and node_count

Different metrics N/A [45], [21], [22], [14], [19]

Table 7. Performance measures

Measure Description Definition Studies

Precision
The proportion of the predicted
positive

cases that were correct

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

[8], [14], [20],

[22], [25], [44]

Recall, pd
The proportion of positive cases

that were correctly identified

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

[8], [26], [10],

[14], [15], [17],

[20], [22], [25],
[44]

Probability of
False

Alarm, pf

Proportion of non-faulty units
incorrectly

classified as fault-prone

𝐹𝑃

𝐹𝑃 + 𝑇𝑁

[9], [26], [10],

[14], [15], [17]

AUC, Area
Under

the Curve

The area under the receiver

operating
characteristics curve.

Independent of the

cutoff value

N/A
[26], [12], [14],
[19], 20], [21],

[24], [44]

F-measure
Harmonic mean of precision and

recall

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

[8], [14], [15],

[16], [22], [25],
[44], [45]

G-measure Harmonic mean of pd and (1-pf)
2 × 𝑝𝑑 × (1 − 𝑝𝑓)

𝑝𝑑 + (1 − 𝑝𝑓)
 [10], [14]

Balance

The euclidean distance from the

(pd, pf)
point to (pd=1, pf=0) in the ROC

curve

1 −√
(𝑝𝑓)2 + (1 − 𝑝𝑑)2

2
 [17]

MCC

A compound measure

considering all true

and false positives and negatives

𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 [9], [14], [15]

Specificity

Is defined as the proportion of

actual negatives, which got
predicted as the negative

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 [20]

Accuracy
a ratio of correctly predicted
observation to the total

observations

𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

[20], [25]

FP rate
refers to the expectancy of the

false positive ratio

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 [23]

FN rate

The false negative rate is the

proportion of the individuals with

a known positive condition for
which the test result is negative.

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 [23]

G-mean

Is a metric that measures the
balance between classification

performances on both the

majority and minority classes. A
low G-Mean is an indication of a

poor performance.

N/A [23]

Miscellaneous
H-measure, Cost,

Hubert Stat. Procedure
N/A

[26]

Change the algorithm: While in every machine learning problem, it ’s a good rule of thumb to
try a variety of algorithms, it can be especially beneficial with imbalanced datasets. Decision
trees frequently perform well on imbalanced data [32].

Oversample minority class: Oversampling can be defined as adding more copies of the
minority class. Oversampling can be a good choice when you don’t have a ton of data to
work with [43].

Undersample majority class: Undersampling can be defined as removing some observations
of the majority class. Undersampling can be a good choice when you have a ton of data -
think millions of rows [43]. But a drawback is that we are removing information that may be
valuable. This could lead to underfitting and poor generalization to the test set.

Generate synthetic samples: A technique similar to upsampling is to create synthetic
samples. For example, some methods use a nearest neighbors algorithm to generate new and
synthetic data we can use for training our model [43]. Again, it’s important to generate the
new samples only in the training set to ensure our model generalizes well to unseen data.

5 .3 Cro ss -Pro jec t Defec t Pred ic t io n

It’s not always possible for companies to train a model based on their local data to predict the fault

in their programs. The lack of local data or the difficulty to collect it is one important reason why

companies are reluctant to use defect prediction. Another issue is that companies change their

practice in the course of time and current local data might not be representative in the near future

so, they are not interested in organizing all these local data. One alternative is to use models that

are trained based on similar projects and then use it to predict the defects in another project. This

approach produces fairly satisfying results and it is financially reasonable which makes it very

popular especially in the last recent years. Researchers have been interested in this topic recently.

He et al. [8] showed that simple classifiers like NB can do as well as the other modeling method in

CPDP. Also, they showed that NB and BN are quiet stable and produce reasonable results for

different metric sets in source and target data. Chen et al. [13] tried a regression model on six-

open-source projects and concluded that a good regression model can perform well in many cases

in comparison to more complicated models like random forests. Chen et al. [9] proposed a novel

approach (Double Transfer Boosting DTB) to enhance the prediction models in CCDP. This

approach involves data gravitation re-weight and transfer boosting that removes negative samples.

They also offered a model (VCB-SVM) which is basically a model based on SVB and boosting

that can address class imbalance issues. Peters et al. [10] presented LACE2 which is a multiparty

sharing protocol that allows companies to predict the defect in their codes even when they don’t

have enough local data to build a model based on it, Nam et al. [12] proposed a heterogeneous

defect prediction model (HDP) based on metric matching that can predict defects in software as

good as other approaches.

6 Future work and l imitations

This review is based on 23 prior studies that are published later than 2015 and does not
cover the whole literature. Indeed, more fine-grained research should be done to make a
general conclusion about challenges and popular methods and metrics in SDP. A potential
future work for this review would be making a comparison between the performance results
of different machine learning models in SDP when they are used by the same set of features
and databases. Also, the same comparison can be made for different databases and different
sets of features.

7 Conclusion

This paper presents a review of different machine learning models, datasets, and features
used for software defect prediction. Machine learning models in SDP are categorized into
supervised and unsupervised models, and each category and related prior studies are
explained. An overview of software engineering metrics as features of SDP is provided.

Different categories of code metrics in SDP are depicted alongside the research works that
based their model on them. Furthermore, different performance evaluation metrics for SDP
machine learning models have been introduced as well as the papers that use them. Finally,
recent challenges and trends in SDP are described, and some examples for each of them are
provided.

References

[1] Shepperd, Martin, David Bowes, and Tracy Hall. "Researcher bias: The use of machine learning in
software defect prediction." IEEE Transactions on Software Engineering 40.6 (2014): 603 -616.

[2] Malhotra, Ruchika. "A systematic review of machine learning techniques for software fault
prediction." Applied Soft Computing 27 (2015): 504-518.

[3] Li, Ning, Martin Shepperd, and Yuchen Guo. "A systematic review of unsupervised learning
techniques for software defect prediction." arXiv preprint arXiv:1907.12027 (2019).

[4] Ghotra, Baljinder, Shane McIntosh, and Ahmed E. Hassan. "Revisiting the impact of classification
techniques on the performance of defect prediction models." Proceedings of the 37th International
Conference on Software Engineering-Volume 1. IEEE Press, 2015.

[5] Wang, Song, Taiyue Liu, and Lin Tan. "Automatically learning semantic features for defect
prediction." 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE,
2016.

[6] Wang, Song, et al. "Deep semantic feature learning for software defect prediction." IEEE
Transactions on Software Engineering (2018).

[7] Hosseini, Seyed rebvar, Burak Turhan, and Dimuthu Gunarathna. "A systematic literature review
and meta-analysis on cross project defect prediction." IEEE Transactions on Software Engineering
45.2 (2017): 111-147.

[8] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on software defect prediction with a
simplified metric set,”Inf. Softw.Technol., vol. 59, pp. 170–190, 2015.

[9] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples reduction in cross-company software
defects prediction,”Inf.Softw. Technol., vol. 62, pp. 67–77, 2015.

[10] F. Peters, T. Menzies, and L. Layman, “Lace2: Better privacy preserving data sharing for cross
project defect prediction,” inProc.37th Int. Conf. Softw. Eng.-Vol. 1, 2015, pp. 801–811.

[11] Yan, Meng, et al. "File-level defect prediction: Unsupervised vs. supervised models." 2017
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM) .
IEEE, 2017.

[12] J. Nam and S. Kim, “Heterogeneous defect prediction,” inProc.10th Joint Meeting Found. Softw.
Eng., 2015, pp. 508–519.

[13] M. Chen and Y. Ma, “An empirical study on predicting defect numbers,” inProc. Int. Conf. Softw.
Eng. Knowl. Eng., 2015, pp. 397–402.

[14] Zhang, Feng, et al. "Towards building a universal defect prediction model with rank transformed
predictors." Empirical Software Engineering 21.5 (2016): 2107-2145.

[15] Bennin, Kwabena Ebo, et al. "Mahakil: Diversity based oversampling approach to alleviate the
class imbalance issue in software defect prediction." IEEE Transactions on Software Engineering 44.6
(2017): 534-550.
[16] Y. Zhang, D. Lo, X. Xia, and J. Sun, “An empirical study of classifier combination for cross-
project defect prediction,” inProc. IEEE39th Ann. Comput. Softw. Appl. Conf., 2015, pp. 264–269.

[17] Ryu, Duksan, Jong-In Jang, and Jongmoon Baik. "A hybrid instance selection using nearest -
neighbor for cross-project defect prediction." Journal of Computer Science and Technology 30.5
(2015): 969-980.

[18] Zhang, Feng, et al. "The use of summation to aggregate software metrics hinders the performance
of defect prediction models." IEEE Transactions on Software Engineering 43.5 (2016): 476 -491
[19] Singh, Pradeep, and Shrish Verma. "Cross project software fault prediction at design phase." Int.
J. Comput. Electr. Automat. Control Inf. Eng 9.3 (2015): 800-805.

[20] Singh, Satwinder, and Rozy Singla. "Comparative performance of fault -prone prediction classes

with k-means clustering and MLP." Proceedings of the Second International Conference on
Information and Communication Technology for Competitive Strategies. ACM, 2016.

[21] Zhang, Feng, et al. "Cross-project defect prediction using a connectivity-based unsupervised
classifier." Proceedings of the 38th International Conference on Software Engineering. ACM, 2016.

[22] Yang, Jun, and Hongbing Qian. "Defect prediction on unlabeled datasets by using unsupervised
clustering." 2016 IEEE 18th International Conference on High Performance Computing and
Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2016

[23] Boucher, Alexandre, and Mourad Badri. "Software metrics thresholds calculation techniques to
predict fault-proneness: An empirical comparison." Information and Software Technology 96 (2018):
38-67.

[24] Czibula, Istvan-Gergely, et al. "A novel approach using fuzzy self-organizing maps for detecting
software faults." Studies in Informatics and Control 25.2 (2016): 207-216.

[25] Chang, Ruihua, et al. "A novel method for software defect prediction in the context of big data."
2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. IEEE, 2017.

[26] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with a support vector machine for cross-
project defect prediction,”Empirical Softw. Eng., vol. 21, no. 1, pp. 43–71, 2016.

[27] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener, “Defect prediction from static
code features, current results, limitations, new approaches,” Automated Software Engineering, vol. 17,
no. 4, pp. 375–407, 2010

[28] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, Benchmarking classification models for
software defect prediction: A proposed framework and novel findings,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 485–496, 2008.

[29] N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,” Machine Learning, vol. 59, no. 1-2,
pp. 161–205,2005.

[30] J. R. Quinlan, C4. 5: programs for machine learning.Morgan Kaufmann, 1993, vol. 1.

[31] L. Breiman, “Bagging predictors, ”Machine learning, vol. 24, no. 2, pp. 123–140, 1996.

[32] Song, Qinbao, Yuchen Guo, and Martin Shepperd. "A comprehensive investigation of the role of
imbalanced learning for software defect prediction." IEEE Transactions on Software Engineering
(2018).

[33] Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,” in Proceedings of
the International Conference on Machine Learning, 1996, pp. 148–156.

[34] J. Rodr ́ıguez, L. Kuncheva, and C. Alonso, “Rotation forest: A new classifier ensemble
method.”IEEE transactions on pattern analysis and machine intelligence, vol. 28, no. 10, pp. 1619–
1630, 2006

[35] T. K. Ho, “The random subspace method for constructing decision forests, ”IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 832–844,1998

[36] S. Chidamber and C. Kemerer, “A metrics suite for object-oriented design, ”IEEE Transactions on
Software Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[37] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency of change metrics
and static code attributes for defect prediction,” in Proceedings of the 30th international conference on
Software engineering. ACM, 2008, pp. 181–190.

[38] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented metrics on open
source software for fault prediction, ”IEEE Transactions on Software Engineering, vol. 31, no. 10, pp.
897–910, 2005.

[39] E. Arisholm and L. C. Briand, “Predicting fault-prone components in a java legacy system,” in
Proceedings of the 2006 ACM/IEEE international symposium on Empirical software engineering.
ACM, 2006, pp. 8–17.

[40] PROMISE data set: http://promise.site.uottawa.ca/SERepository/datasets-page.html

[41] NASA Data set: http://www.filesanywhere.com/fs/v.aspx?v=896a648c5e5e6f799b

[42] Gao, Kehan, Taghi M. Khoshgoftaar, and Amri Napolitano. "Exploring software quality
classification with a wrapper-based feature ranking technique." 2009 21st IEEE International

http://www.filesanywhere.com/fs/v.aspx?v=896a648c5e5e6f799b

Conference on Tools with Artificial Intelligence. IEEE, 2009.

[43] Sohan, Md Fahimuzzman, et al. "Revisiting the Class Imbalance Issue in Software Defect
Prediction." 2019 International Conference on Electrical, Computer and Communication Engineering
(ECCE). IEEE, 2019.

[44] Nam, Jaechang, and Sunghun Kim. "Clami: Defect prediction on unlabeled datasets (t)." 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE) . IEEE, 2015.

[45] Chen, Xiang & Zhao, Yingquan & Wang, Qiuping & Yuan, Zhidan. (2017). MULTI: Multi -
Objective Effort-Aware Just-in-Time Software Defect Prediction. Information and Software
Technology.

[46] Nam, Jaechang, and Sunghun Kim. "Clami: Defect prediction on unlabeled datasets (t)." 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE) . IEEE, 2015.

[47] Chen, Xiang, et al. "MULTI: Multi-objective effort-aware just-in-time software defect
prediction." Information and Software Technology 93 (2018): 1-13.

[48] Wang, Huanjing, Taghi M. Khoshgoftaar, and Amri Napolitano. "A comparative study of
ensemble feature selection techniques for software defect predict ion." 2010 Ninth International
Conference on Machine Learning and Applications. IEEE, 2010

[49] Laradji, Issam H., Mohammad Alshayeb, and Lahouari Ghouti. "Software defect prediction using
ensemble learning on selected features." Information and Software Technology 58 (2015): 388-402.

[50] Catal, Cagatay. "Software fault prediction: A literature review and current trends." Expert systems
with applications 38.4 (2011): 4626-4636.

